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ABSTRACT

This paper presents a pollination based optimization (PBO) algorithm. PBO is a bio-inspired, multi-

population global optimization algorithm capable of generating high accuracy solutions to complex 

problems. The plants have been observed to optimize their resource expenditure on fragrance, floral display, 

nectar production and pollen to attract pollinating agents such as insects, bees, flies, bats, birds, etc. Subject 

to pollination success, plants increase or decrease their total resource cost on fragrance, superior nectar 

content, pollen and floral display. If the reproductive success is better, plants decrease their investment. In 

case the reproductive success is below average, plants increase their investment on resources affecting 

pollination. This increases the number of pollinators and their re-visitation causing the reproductive success 

to go up. The proposed PBO algorithm was evaluated on the 80 test functions of CEC 2021 test suite, and the 

performance was compared with 8 recent algorithms. The algorithm performed exceptionally well, leading in 

41 of the 80 functions of the test bench. The paper further, demonstrates the application of the proposed 

algorithm to evolve an optimized CNN architecture for the paddy plant disease detection from the paddy leaf 

dataset. The paddy leaf dataset has 5932 infected images indicating various diseases. The PBO based 

approach with 99.37% accuracy outperformed KNN, SVM, Decision Tree, Random Forest, GA-CNN and 

BBBC-CNN based algorithms.
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1. BACKGROUND 

OPTIMIZATION is an instinct inherent in human 

beings, animals, plants and trees. In their search for food, 

ants find the shortest path between their colony and 

location of food, through pheromone laying [1]. 

According to biogeography, as survival tactics, birds 

maintain an optimal number on an island [2], fireflies 

optimize their hunt and reproductive success through 

their flashing behavior [3], honey bees waggle dance to 

communicate the distance and direction of flower patches 

to other bees of the hive to maximize their nectar 

collection [4-5]. The human beings have a tendency to 

create a mathematical discipline for anything that is 

abstract, significant and general. Searching and 

optimization are so significant to us that these have 

become one of the important and established branches of 

the mathematics. This paper proposes a pollination-based 

global optimization algorithm named PBO. In the 

pollination process pollen is transferred from the anther 

(male part), to the stigma (reproductive organ). There are 

two forms of pollination namely biotic and abiotic. In the 

biotic pollination insects and bees act as primary pollen 

carriers. Biotic pollination accounts for approximately 

90% of the total pollination. On the other hand, water and 

wind act as pollen carriers in abiotic pollination. 

For plants, a cost-based pollination model was proposed 

by Thakkar et al. [6]. This model was further improved by 

B. Sriram et al. [7]. The above model does not adequately 

represent the inherent randomness of the pollination 

process. A careful look at the pollination process reveals 

that neither it is totally random, nor it is purely 

deterministic. This process is a guided one with 

considerable randomness. In the pollination process 

pollinators arrive randomly, and their repeated visits are 

guided by plant investment in the nectar, floral display, 

pollen and fragrance. Another pollination-based 

algorithm namely FPA was proposed by Yang She et al. 

[8]. 

This paper presents a new pollination success based, bio-

inspired, multi-population, optimization algorithm 

named PBO, that is conceptually very different from 

FPA. Section 2 builds the PBO concept. Section 3 

develops the formal algorithm based on the inspiration 

derived from the plants. In the Section 4 we evaluate and 

discuss the performance of PBO on the 80 functions of 

the CEC 2021 test suite and compares it with 8 of the 

leading algorithms. Section 5 describes its application to 

the identification of an optimized CNN for the disease 

detection in paddy plants. Section 6 concludes the paper.

2. PBO CONCEPT

For plant species to survive, these need to produce their 

next generation by producing their seeds via pollination. 

Pollinators forage for pollen and nectar. The plant flowers 

through their fragrance and floral display attract 

pollinators to provide them with quality nectar and pollen. 

These pollinators then carry pollen from one flower to 

other  and thus ,  the  pol l inat ion begins .  This 

interdependence of the two on each other leads to 

successful pollination. The pollination process gets 

completed in a specific time frame during the pollination 

season. The relationship between pollination success and 

resource control could be explained as follows:

(a) If the pollination success is proceeding at the normal 

rate, the plants invest average resource on all cost 

factors.

(b) If the pollination success is observed to be below 

(above) normal rate, plants increase (decrease) the 

investment in different components (floral display, 

fragrance, pollen and nectar) randomly, to attain 

o p t i m a l  p o l l i n a t i o n  w i t h  m i n i m a l  t o t a l 

investment/cost. Increased investment on resources/ 

cost components results into attracting a greater 

number of pollinators with increased visitation 

leading to successful pollination with high 

probability.

© If plants allow maximum expenditure/ investment for 

every cost component i.e., floral display in terms of 

brightness of flowers, nectar sweetness, fragrance 

and pollen quantity then plants are likely to achieve 

maximal pollination success with high probability at 

the highest cost in that particular season.

For the pollination process to be successful, pollinators 

need to be attracted and they must repeatedly visit flower 

patches. Plants achieve this by investing their resources in 

four major components namely floral display, flower 

fragrance, pollen and nectar. These four investment/cost 

components are as depicted in Table 1; form the decision 

variables for the optimization model. Though, pollination 

success is a function of these variables as these aid in 

luring the pollinators yet the visitation by the pollinators 

is random. Hence, the pollination success has a lot of 

randomness. Thus, an investment vector consists of 'n' 
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elements/ decision variables. For a plant, investment 

vector consists of above said 4 components. The count for 

decision variables is problem-specific and shall vary from 

problem to problem.

In the PBO, patches represent populations of candidate 

solutions, with each patch consisting of a fixed number of 

flowering plants. Each plant has an associated investment 

vector 'I' consisting of investment/cost components. As 

stated earlier each of the investment component is a 

decision variable influencing the total investment as well 

as pollination success for the plant. The fitness of a plant 

(pollination success) is the function of investment vector.

Let for an investment vector I = {x1, x2, …, xn} 

pollination success 'S' be defined as given below:

S = f (I)     (1)

The optimization problem can now be stated as follows:

Search a specific vector I* = {x1, x2, …, xn} from 

amongst all the possible candidate solutions for which 

S* = f (I*) 

is the optimal value of 'S'; 

subject to the constraint that:

Bounds on decision variables are not violated.

In the beginning algorithm creates 'N' patches, each 

consisting of 'p' investment vectors (candidate solutions). 

Each investment vector consists of 'n' investment 

components or decision variables. All investment vectors 

are created randomly, respecting the bounds.

As soon as the initial set of 'N' patches is created, 

algorithm evaluate pollination success (fitness) of each of 

the plants. From amongst all the patches of investment 

vectors we record the global best investment vector that 

yields the best level of pollination.

The algorithm generates new investment vectors for 

every vector of the current patch as given in Algorithm 1.  

These are then subjected to the combination and mutation 

operations. Collective pollination behavior of all the 

patches is modeled by 'Combination' operation. It has 

been observed that whenever one of the flowering patches 

attains a specific level of success, simultaneously all of its 

neighboring patches also achieve almost the same level of 

pollination success. The algorithm models this process by 

moving each of the decision variables of the investment 

vectors of a patch towards global best investment vector. 

For good results, this movement is performed with a high 

probability between 0.7 to 0.95. When the PBO begins 

search in the current patch we call it a local search. It 

continues with the local search for every patch. After a 

given fraction of the maximum number of iterations the 

algorithm incorporates the global search; moving towards 

global optima for a limited fraction of iterations e.g. let us 

say the total number of iterations (seasons) is 

max_iterations, then up to the first 20% of max_iterations 

we do not apply combination operator (only local search). 

From 20% to 25% of max iterations, we apply the 

combination operator as follows:

Here, subscript 'j', indicates jth decision variable of ith 

candidate solution.

The algorithm again carries out a local search without a 

combination operation from iteration number greater than 

25% of the max_iterations to iteration number less than or 

equal to 45% of the max_iterations; between the iteration 

number greater than 45% to 50% of the max_iterations, 

algorithm carries out global search using a combination 

operation. This cycle of local search followed by global 

search is repeated. 

The algorithm combines the two sets of patches, i.e., the 

current patch and the newly created patch. This combined 

patch has twice the number of investment vectors. 

Constraints/ bound violation if any are checked and 

corrected. Following this step algorithm evaluates the 

fitness (pollination success) of each of the investment 

vectors of the combined patches and retains each patch 

with 'p' best fit investment vectors. The algorithm then 

updates global best  (if needed) and records its 

corresponding fitness values. 

Since, the pollination is a seasonal process, the algorithm 

runs for a given number of seasons (iterations). On 

meeting the termination criterion, the algorithm stops 

with     as the optimal solution vector and the 

corresponding fitness value as the optimal fitness value 
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for the given total cost.

Natural calamities such as abnormal temperatures, 

storms, rains or damage to plants due to outbreak of 

certain diseases may affect the pollination success 

adversely. PBO models such effects using a 'mutation' 

operator that is similar to the one used in GAs. Mutation 

operator is applied with a low probability on each of the 

components of all the investment vectors

IJIMSR, Vol.1, No.1, (2023) 23.1.1.005
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3.  PROPOSED ALGORITHM

 A. Nomenclature

 α0 :  A problem specific constant, usually   

  between 1 to 100

 Patch :  Set of flowering plants

 S:  Pollination success (fitness)  

  corresponding to an investment vector

 N: Total number of patches

 n: Number of cost components of an 

  Investment Vector (number of decision 

  variables) 

 Pcurrent: Matrix of size p×n of investment 

  vectors corresponding to current Patch

 p: Number of investment vectors. It   

  equals number of plants in the patch

 Pc: Combination probability (0.7 to 0.95)

 Pm: Mutation probability 

  (usually less than 0.1)

 global_flag: is set for a given number of iterations  

  (about 5%) after a preset amount of  

  iterations for local search (about 20%  

  of maximum iterations) 

 max_seasons: Number of maximum Seasons for 

  which algorithm should run 

  (termination criterion)

 : Optimally fit investment vector of all 

  the populations evaluated so far

The proposed algorithm is given in figure 1.

4. PERFORMANCE OF THE PROPOSED   

 ALGORITHM  

To validate the effectiveness of the PBO we implemented it in 

MATLAB. We evaluated its performance on 80 functions of the 

CEC-2021 test suite, using a core i7@2.8 GHz with a 16 GB 

RAM-based laptop operating on Windows-11 platform. We 

compared the performance of PBO with 8 other leading 

algorithms namely L-SHADE-OrdRW [10], MadDE [11], 

RB_IPOP_CMAES_PPMF [12], NL-SHADE-RSP [13], 

MLS-LSHADE [14], DEDMNA [15], J21 [16] and SOMA-

CLP [17]. For performance analysis, we considered all 

functions with 10 dimensions. 25 trial runs were conducted for 

each of the test functions. Mean error of the 25 runs was used as 

the comparison metric. We evaluated the performance of all the 

9 algorithms. Function wise performance of all the competing 

algorithms is placed in Table 2.

Comparative performance of all the 9 algorithms, including the 

proposed PBO algorithm, is presented in Table 3. The 

comparative performance is in terms of the number of functions 

on which an algorithm delivered the best-performance. Looking 

at Table 3 one could observe that amongst the 9 competing 

algorithms, PBO algorithm tops the chart, achieving the best 

performance in 41 of the 80 functions of the CEC-2021 test 

suite. In 3 of these 41 functions none of the competing 

algorithms could match the performance record of PBO. For 

other 38 of the 41 functions, its performance is the best but it was 

also matched by a few other algorithms. 

Algorithm L-SHADE-OrdRW [10] bags the second place with 

the best performance on the 41 of the test functions. Out of these 

41 functions, it gave unique best performance only on 2 of the 80 

benchmark functions, which was lesser than PBO.

Table 3: Comparative Performance on CEC-2021 Test Suite

A = Number of functions for which the best 

performance is recorded, B = Number. of functions for 

which (Unequalled) best performance was recorded, 

C = No. of functions for which the best performance is 

recorded but is equalled by other competing 

algorithms also.

MadDE [11] stands at the number 3 position by 

achieving the best performance over 40 out of 80 

functions. Out of these 40 functions MadDE algorithm 

delivered an unmatched performance for the 2 functions 

only and the best performance over 38 other functions, 

those were matched by the performance of some other 

algorithms also. RB_IPOP_CMAES_PPMF was 

placed at the number 4 position as it gave the best 

performance over 31 benchmark functions. 
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Algorithm

 

A

 

B

 

C

 

Rank

PBO
 

41
 

3
 

38
 

1

L-SHADE-

OrdRW  
41  2  39  2

MadDE
 

40
 

2
 

38
 

3

RB_IPOP_CM

AES_PPMF

 

31

 

8

 

23

 

4

NL-SHADE-

RSP

 

21

 

4

 

17

 

5

MLS-

LSHADE
20 0 20 6

DEDMNA 18 3 15 7

J21 15 1 14 8

SOMA-CLP 7 0 7 9



5. PBO APPLICATION TO RICE DISEASE  

 DETECTION

Rice is a staple food crop for a large portion of the world's 

population and plays a vital role in global food security. 

However, rice plants are vulnerable to a number of 

diseases, which can significantly reduce crop yield and 

cause farmers to lose money. Early disease detection 

limits the spread of the disease and boosts agricultural 

productivity. Manual examination and laboratory testing 

on plant samples (using techniques including chemical 

analyses, genetic analyses, and biochemical approaches) 

are the traditional ways of detecting diseases. Applying 

computer vision algorithms to diagnose plant diseases has 

the potential to provide faster and precise diagnosis with 

fewer computing resources, hence reducing the spread of 

diseases and boosting crop production. Due to the 

complexity of real-world datasets, automated computer-

based disease diagnosis is a challenging and complex 

task. As a result, effective image classification methods 

based on soft computing are required for the accurate and 

scalable identification of plant diseases.

Selecting the optimal hyperparameter combination in 

Convolution Neural Networks (CNNs) can be difficult 

because so many distinct combinations could potentially 

be used. It is difficult to guarantee that a specific set of 

hyperparameters would produce the best results for a task. 

The other option is trial and error selection. But the trial 

and error selection of hyperparameters is time and 

resource consuming. Consequently, there arises a need 

for an automated system that evolves the optimal CNN 

hyperparameters for a given situation. Additionally, when 

building a CNN, one must select the number and structure 

of layers, the number of filters, the size of the filters, the 

stride, padding, the pooling type, the activation function, 

the number of neurons in the fully connected layers, the 

optimizer,  etc.  The network architecture and 

hyperparameters need to be carefully designed in order 

for it to learn the features of the training data successfully.

This section presents a PBO algorithm based approach to 

evolve an optimized CNN model with optimal hyper-

parameters. The proposed method successfully identified 

a lightweight CNN model from the given training dataset 

[18].

5.1  Proposed Approach 

As referred to CNNs, hyper-parameters are the variables 

those control as to how the network is trained and how its 

structure is set up. CNN architecture makes use of a large 

number of hyper-parameters [19-20]. Domain/Technical 

knowledge is necessary to select the optimal hyper-

parameters manually. It is a tedious, time-consuming 

technique that relies on trial and error [21]. This section 

demonstrates the application of a PBO based approach to 

evolve an optimal number of convolution layers of the 

CNN model along with the optimal hyper-parameters. 

This has shortened the design time drastically. The 

approach begins with a single convolution layer skeleton 

CNN as shown in Figure 2, and randomly generates 

populations of investment vectors, where each 

investment vector represents CNN hyper-parameters. 

The fitness function evaluates the CNN model's test 

accuracy for the rice-plant disease classification.

IJIMSR, Vol.1, No.1, (2023) 23.1.1.005
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Table 4 displays the ranges of hyper-parameters 

considered for optimization.

The proposed approach automatically adds a convolution 

layer in the CNN model when necessary. With the 

addition of a new hidden layer, the number of hyper-

parameters increases. As a result, a variable-length 

investment vector encoding scheme is employed. The 

hyper-parameters are encoded in the investment vector, as 

shown in Figure 3.
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Parameter  Range  
Convolution Layers

 
1-10

 Filters  

 

1-64

 Filter Size                           1-10

 
Neurons in fully 

connected layers

32-1024

 Batch size
Epochs
CNN model 

8
1-20
SGD, Adadelta, Adam,  
Adagrad, RMSprop, 
Ftrl Nadam, and Adamax. 

-512 (multiple of 2)

Fig. 3. Variable length investment vector structure used for the optimization

The investment vector structure represents the number of 

filters, convolutional layers, filter size, neurons in fully 

connected layers, batch size, epochs, and optimizer to be 

applied. The classification accuracy for each of the 

individual is then obtained. The CNN architecture with 

the best accuracy is considered the fittest. Our objective is 

to evolve the best-performing CNN architecture along 

with tuned hyper-parameters.

Figure 4 shows the proposed approach to evolve CNN 

architecture. It begins with randomly generated 'N' 

patches of investment vectors (candidate solutions), each 

of size 'p×n'. As given in the algorithm 1, it evaluates the 

fitness of each individual of every population using the 

CNN model. Thereafter, current population Pcurrent is 

modified to obtain 'N' new populations (Pnew). Under 

stated condition and with a given probability Pc, Pnew is 

combined with global best investment vector. With the 

given probability Pm, The current population is then 

mutated. The algorithm then checks the bound violation 

for each decision variable of every population of Pnew. The 

algorithm combines the Pnew with Pcurrent, evaluates the 

combined population and selects best fit 'p' investment 

vectors for each of the 'N' populations as Pnew2. The global 

best investment vector is continually updated as and when 

needed. Pnew2 is then saved as current patch Pcurrent. Finally, 

if the stopping criteria are satisfied, the proposed 

approach outputs the structure of CNN model along with 

the optimized hyper-parameters represented by the global 

best. If the stopping criteria are not met and the given 

number of iterations are not over the algorithm goes for 

next iteration; if the number of iterations are over but the 

condition of maximum limit of layers is yet not satisfied, 

we modify the CNN architecture by adding a new 

convolution layer, reset iteration count to zero, and 

generate new 'N' populations for the evolution of newly 

obtained CNN architecture. 



The proposed approach's termination conditions are 

greater than 98% classification accuracy or no gain in 

model accuracy with a new convolution layer.

5.2 Results and Discussion

As shown in Fig. 4, we first optimize single convolution 

(Conv2d) layer CNN using pollination-based 

optimization. The best accuracy of 94.625% was 

recorded while executing the 29th iteration. The stopping 

criteria were unsatisfied, so a new hidden (Conv2d) layer 

was included in the architecture of CNN, and the new 

optimization cycle began. A similar approach was applied 

to CNNs with three and four convolution layers. Figure 5 

presents the record of the algorithm progress for the CNN 

with three layers. The plot shows generation (seasons) 

versus accuracy values across the iterations. With three 

convolutional layers, the CNN model achieved an 

accuracy of 99.37%. Thus, The PBO Based approach 

successfully evolved a three Conv2d layer CNN 

architecture and optimal hyper-parameters for 

classification of rice plant disease.

Fig. 4. PBO based approach for evolving CNN model and hyper-parameters

International Journal of Innovation in Multidisciplinary Scientific Research    8
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Fig. 5. Generations versus Accuracy (seasons) three-layer CNN

Table 5. Different layers of CNN optimized using PBO

As shown in Table 5 and Figure 5, proposed PBO 

approach achieved 99.375% accuracy. We also observed 

that the CNN architecture with 4 convolution layers 

produced 97.625% accuracy. The optimal three-layer 

CNN model hyperparameters are presented in Figure 6.

Conv2d layers in CNN  Accuracy

1
 

94.625%

2
 

96.875%

3

 

99.375%

IJIMSR, Vol.1, No.1, (2023) 23.1.1.005

Fig. 6. Pollination-based optimized CNN hyper-parameter

We evaluated the performance of proposed approach 

using confusion matrix. The performance results of the 

PBO based approach are shown in Figure 7.

Fig. 7. Confusion Matrix of pollination based Optimized CNN

The confusion matrix yielded true positive (TP), true 

negative (TN), false positive (FP), and false negative 

(FN) values. The performance of the disease detection 

approach is validated using the accuracy, sensitivity, 

specificity, precision, and F1-score performance 

measures.

A comparison of the proposed approach with other 

cutting-edge image classification techniques, such as a 

genetic algorithm (GA)-based CNN, and a big-bang, big-

crunch optimised CNN is shown in Table 6. The PBO 

based optimized CNN performed better than other 

classifiers.

Table 6. Performance Comparison of Proposed approach with 

existing image classification approaches

6. CONCLUSIONS
This paper proposed a novel multi-population based, bio-

inspired, global optimization algorithm called PBO Algorithm. 

The cost optimization behaviour of flowering plants inspired the 

algorithm. Plants optimise resource spending on pollen 

production, floral display, floral fragrance, and nectar 

production based on pollination success. The performance of 

the PBO algorithm was tested on 10-dimensional 80 functions 

of the CEC 2021 test suite. We compared the performance of 

PBO with the 8 existing algorithms. The proposed PBO 

algorithm performed best on 41 of the 80 functions of the CEC-

2021 test bench, followed by L-SHADE-OrdRW. MAdDE 

ranked third with best performance in 40 functions.

Further, we tested the PBO algorithm on rice plant disease 

detection problem. The PBO algorithm was applied to evolve 

the structure of CNN from the training dataset. We observed that 

the PBO performed extremely well. The proposed PBO-CNN 

approach efficiently identified rice diseases. We compared the 

performance of the proposed approach with the existing 8 

machine learning approaches. The comparison results show that 

the proposed PBO-CNN-based approach outperformed all the 

other competing machine learning based approaches including 

GA-CNN and BBBC-CNN approaches. 

International Journal of Innovation in Multidisciplinary Scientific Research    9



        
 

 

        
 

 
Shi�

 
DEDMNA

 
0.0000000

 
0.0000000

 
4.8100000

 
0.1560000

 
0.0000000

 
0.0053100

 
0.0005100

 

14.0000
000

 

86.700000
0

 

373.000
0000

MadDE

 

0.0000000

 

0.0000000

 

10.9000000

 

0.1880000

 

0.0000000

 

0.0162000

 

0.0014200

 

87.9000
000

 

93.300000
0

 

400.000
0000

RB_IPOP_CMAES_
PPMF

 

0.0000000

 

275.00000
00

 

11.2000000

 

1.0600000

 

125.00000
00

 

50.600000
0

 

30.400000
0

 

97.2000
000

 

256.00000
00

 

400.000
0000

J21

 

0.0000000

 

0.0020800

 

10.2000000

 

0.2540000

 

0.0000000

 

0.0254000

 

0.0056200

 

0.00000
00

 

110.00000
00

 

363.000
0000

NL-SHADE-RSP

 

0.0000000

 

0.0000000

 

10.2000000

 

0.0942000

 

0.0000000

 

0.0075700

 

0.0020100

 

0.54500
00

 

80.100000
0

 

390.000
0000

SOMA-CLP

 

0.0000000

 

0.0923000

 

2930000.000
0000

 

0.3580000

 

0.0000079

 

0.0242000

 

0.0026500

 

0.71900
00

 

152.00000
00

 

394.000
0000

MLS-LSHADE

 

0.0000000

 

0.0208000

 

10.1000000

 

0.1210000

 

0.0000000

 

0.0445000

 

0.0070300

 

62.3000
000

214.00000
00

387.000
0000

L-SHADE-OrdRW 0.0000000 0.0437000 10.9000000 0.1890000 6.1700000 0.2710000 0.2980000
100.000
0000

319.00000
00

400.000
0000

PBO 0.0000000 6.9500000 11.5000000 0.4740000
11.800000
0

0.6730000 0.4470000
0.00000
00

100.00000
00

400.000
0000
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Table 2: Performance of Proposed algorithm on CEC-2021 Benchmark Func�ons
 

Func�on
 

F1
 

F2
 

F3
 

F4
 

F5
 

F6
 

F7
 

F8
 

F9
 

F10

Basic
 

DEDMNA
 

0.0000000
 

0.0000000
 

2.1800000
 

0.1280000
 

0.0000000
 

0.0035600
 

0.0005680
 

0.00000
00

 

0.0000000
 

48.0000
000

MadDE
 

0.0000000
 

0.0000000
 

0.0000000
 

0.0000000
 

0.0000000
 

0.0000000
 

0.0000000
 

0.00000
00

 

0.0000000
 

0.00000
00

RB_IPOP_CMAES_
PPMF 

0.0000000
 

0.2670000
 

9.2300000
 

1.0200000
 

37.800000
0  

1.4300000
 

7.5000000
 

0.00000
00  

0.0000002
 

48.0000
000

J21 
0.0000000 0.0000000 5.6300000  0.2430000  0.0000000  0.0340000  0.0079700  0.00000

00  

0.0000000  46.4000
000

NL-SHADE-RSP 
0.0000000 0.0000000 0.0000000  0.0143000  0.0000000  0.0068700  0.0013800  0.00000

00  

0.0000000  0.00193
00

SOMA-CLP 
0.0000000 0.1040000 361000000.0

000000  

0.3600000  0.0000000  0.0311000  0.0021500  0.00000
00  

0.0000000  771.000
0000

MLS-LSHADE 
0.0000000 0.0000000 2.2500000  0.0065800  0.0000000  0.0018300  0.0000000  0.00000

00  

0.0000000  0.00692
00

L-SHADE-OrdRW 
0.0000000 0.0000000 0.0000000  0.0000000  0.0000000  0.0000000  0.0000000  0.00000

00  

0.0000000  0.00000
41

PBO 
0.0000000 0.0000000 0.0000000  0.0000000  0.0000000  0.0000000  0.0000000  0.00000

00  

0.0000000  0.00000
00

Bias  
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